7 research outputs found

    A Hybrid Method for Modeling and Solving Supply Chain Optimization Problems with Soft and Logical Constraints

    Get PDF
    This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimization models. Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition, technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP) and constraint logic programming (CLP), were combined in the hybrid method. This integration, hybridization, and the adequate multidimensional transformation of the problem (as a presolving method) helped to substantially reduce the search space of combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both. This approach is particularly important for the decision and combinatorial optimization models with the objective function and constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management, project management, and logistic problems). The ECLiPSe system with Eplex library was proposed to implement a hybrid method. Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and reducing the size of the combinatorial problem to a significant extent

    ALGORITHM OF SELECTING COST ESTIMATION METHODS FOR ERP SOFTWARE IMPLEMENTATION

    Get PDF
    The article discusses the problem of selecting estimation methods for cost and implementation time for ERP systems, in case when system modifications are necessary. The authors reviewed the methods available in the literature and characterised the stages of strategic phase in the implementation process. On the basis of the analysis of data range and quality required by each method and the data obtained at different stages, a selection algorithm for each stage was proposed

    Estimating New Product Success with the Use of Intelligent Systems

    No full text
    The paper presents identifying success factors in new product development and selecting new product portfolio. The critical success factors are identified on the basis of an enterprise system, including the fields of project management, marketing and customer’s comments concerning the previous products. The model of measuring the success of a product includes the indicators such as duration and cost of product development, and net profit from a product. The proposed methodology is based on identification of the relationships between product success and project environment parameters with the use of artificial neural networks and fuzzy neural system that is compared with the results from linear model. The presented method contains the stages of knowledge discovery process such as data selection, data preprocessing, and data mining in the context of an enterprise resource planning system database. The illustrative example enhances a performance comparison of intelligent systems in the context of data preprocessing

    Usefulness of Software Valuation Methods at Initial Stages of ERP Implementation

    No full text
    This work discusses the problem of selecting methods for valuing the costs and estimating the time of implementing computer systems in cases when system modification is necessary. The methods presented in literature are reviewed and the stages of strategic phase of implementation characterised. On the basis of the analysis of data required by each method and the data obtained at different stages, appropriate selection of methods for each stage was proposed

    The Software Cost Estimation Method Based on Fuzzy Ontology

    No full text
    In the course of sales process of Enterprise Resource Planning (ERP) Systems, it turns out that the standard system must be extended or changed (modified) according to specific customer’s requirements. Therefore, suppliers face the problem of determining the cost of additional works. Most methods of cost estimation bring satisfactory results only at the stage of pre-implementation analysis. However, suppliers need to know the estimated cost as early as at the stage of trade talks. During contract negotiations, they expect not only the information about the costs of works, but also about the risk of exceeding these costs or about the margin of safety. One method that gives more accurate results at the stage of trade talks is the method based on the ontology of implementation costs. This paper proposes modification of the method involving the use of fuzzy attributes, classes, instances and relations in the ontology. The result provides not only the information about the value of work, but also about the minimum and maximum expected cost, and the most likely range of costs. This solution allows suppliers to effectively negotiate the contract and increase the chances of successful completion of the project
    corecore